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SUMMARY 
For the rational design of interlocking block pavements, it is necessary to make clear the stresses in 
concrete blocks due to traffic loads. However, there.is no theoretical method developed for the analysis 
of assembled discontinuous structures, such as interlocking block pavements. The Finite Element Method 
(F.E.M) provides powerful tool to handle discontinuous structures. Then, we developed the computer program 
for analysis of interlocking block pavements by the use of the F.E.M. 
The rectangular plate element was employed to represent the concrete block. The joint is modeled as a set 
of springs and the stiffness matrix of the joint element is derived by the virtual work principle. The 
values of the spring coefficients in the joint element should be determined from experiments or field 
tests. In the computer program, a interlocking block pavement was divided into rectangular plate elments 
and joint elements and the subbase was assumed to be a liquid foundation or a "Winkler foundation" which 
is used in the analysis of concrete pavements. 
We can compute the stresses and deflections in concrete blocks due to traffic load by this program 
changing properties and dimensions of blocks, laying pattern, supporting condition and loading condition. 

l. INTRODUCTION 
Since the interlocking block pavements are con­
sisted of concrete blocks which have high 
sterngth and excellent durability and easily re­
habilitated in the area where blocks are broken 
and large settlements occur, it can be applied 
to roads in residential areas as well as to roads 
in intersection and container terminal where 
heavy traffic loads are applied. 
The mechanical behavior of interlocking block 
pavements is empirically evaluated by deflec­
tions. In Japan, however, there is little tradi­
tion and experience of block pavements. Further­
more, because of high strength of concrete blocks 
and effect of joints betweeru blocks, their 
mechanical behavior is expected to be very com­
plex. Consequently, for purpose of the rational 
design of interlocking block pavements for heavy 
traffic roads, it is necessary to make clear the 
stresses in concrete blocks. However, there is 
no theoretical method to evaluate these stresses. 
The Finite Element Method (F.E.M.) which have 
been developed along with the development of 
high speed digital computers provides powerful 
tool for treating the discontinuous structures, 
such as interlocking block pavements. . 
In this paper, the computer simulation model of 
interlockingolock pavements by the use of F.E.M. 
is presented and its validity is examined by 
computing the stresses and deflections.under the 
various conditions. 

2. METHOD OF ANALYSIS 
The interlocking block pavements are consisted 
of concrete blocks and joints filled with sand; 
i.e., they are a kind of discontinuous struc­
ture. Thus, their mechanical behavior is expected 
to be very complicated. However, there is no the­
oretical method available to analyse inter­
locking block pavements. So far, in order to eval­
uate the deflections of interlocking block pave­
ments due to loads, the multi-layer-theory is 
used by replacing the block layer with an equiv­
ale;:t continuous one. This method, however, has 
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a significant disadvantage of being unable to 
estimate the stresses and strains in concrete 
blocks due to loads, while the F.E.M. can applied 
to estimate them by modeling blocks and joints to 
an assembly of proper finite elements. 
In our study, we adopted two dimentional plate­
bending F.E.M. which is based on the classical 
plate bending theory. 

2-1. Rectangular plate element 
The rectangular plate element employed in our 
study is shown in Figure 1 (1). 
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Figure 1: Rectangu1~r plate element. 

It has four nodal points, and each nodal point 
has three fictitious forces and corresponding 
displacements. The three forces are a vertical 
force, Fw a moment around x-axis, Mx and a 
moment around y-axis, My. The three displacements 
are a deflection in the z-direction, w; a rota­
tion around x-axis, 6x and a rotation around y­
axis, 6r. The three forces and displacements have 
the fol owing relation: 



f=(K+H).d 
which 

(1) 

f = < fl f2 f3 f4 >t 
fi = < Fwi Mxi Myi >t = externally applied nodal 

forces 
of the plate 
of the subbase 

stiffness matrix 
stiffness matrix 
< dl d2 d3 d4 >t 

, di = < wi exi eyi >t = nodal displacements 
in which superscript, t, indicates the transpose 
'matrix. 
In our study, the subbase is assumed to be a liq­
uid foundation or a "Winkler foundation"; Le., 
the vertical force at a nodal point in the sub­
base is proportional to the deflection at the 
node with a constant proportionality, the modulus 
:of the subbase reaction, k. This assumption is 
,employed in the analysis of concrete pavements 
: (2,3,4) . 
Under this assumption, the stiffness matrix, H, 
is banded and its components -depend on the modu­
lus of the subbase reaction, k. 

2-2. Joint element 
If the joints be.tween blocks are narrow and 
filled with sand, frictional resistance will be 
developed in the joints and transmit part of the 
load to adjacent blocks (5). Since this mechanism 
is not clearly known, it is very difficult to 
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2: Coordinates and displacements 
of a joint. 
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treat the joint behavior theoretically. In our 
study, joints are assumed to be a set of springs 
which transmit part of the load proportional to 
the difference of the displacements between both 
sides of a joint. 
Defining coordinates, forces and corresponding 
displacements of a joint as shown in Figure 2. 
this is represented by the following equation: 

(2) 

(3) 

Subscripts, rand 1, indicate right and left side 
of the joint, respectively. 
The quantities, Kw, Ken and Ket, are the spring 
coefficients and represent the rigidity of the 
joint: shear, bending around n-axis and bending 
around t-axis, respectively. Their functions are 
diagrammatically illustrated in Figure 3. 
This is not the strict physical model but a kind 
of reological one. Thus the values of the spring 
coefficients should be determined by experiments 
or field tests. Under this assumption, the formu­
lation of the stiffness matrix of the joint ele­
ment will be presented in the following. 
We consider a joint element with four nodal 
points, 1, 2, 3 and 4, as shown in Figure 4. The 
deflection and rotations along with left and 
right sides of the joint element are assumed to 
be expressed by the following equations: 

wI = ml 
enl = 
etl = 
wr = SI 
enr 

+ m2t + m3t2 +- m4 t3 
- m2 - 2m3t - 3m4t2 

+ S2t + S'lt 2 + 
S2 2S3t 

etr = 
or 
dl '" B . {m} 
d r = B . {S} 

in which 

/ 

{m}= {ml,········, 
{S}= { SI,········, 

I [1 t t
2 

t
3 

B = 0 -1 -2t -3t 2 

o a 0 0 

+ CIS + 2m6t 
S4t3 

3S4t2 

(4) 

(5) 

(6) 

(a) Shear spring (b) Bending spring around n-axis (c) Bending spring around t-axis 

Modeling a joint as set of springs. 
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Figure 4: Joint element. 

Using Eq. (5), the displacement vectors of four 
nodal points of the joint element can be related 
to the vectors, {a} and {e}, as follows: 

(7) 

(8) 

in which 

C = [:~::2~~] 

{ 
0 0 0 

-1 0 0 
0 0 0 

2b 4b2 8b3 
-1 -4b -12b2 

0 0 0 UJ 
(9) 

Solving Eq. (8) for {a} and {S}~ the following 
expression is obtained: 

(10) 

1 0 0 0 0 0 
0 -1 0 0 0 0 
3 1 0 3 1 0 

C- 1 -W -j) 4b2 2b 
(11) 1 1 1 1 

-4b3 -4bz 0 -4b3 -4bz 0 

0 0 1 0 0 0 

0 0 1 0 0 
1 

-4b 4b 

Substituting Eq. (10) into Eq. (5), the displace-
ment vectors along with both sides of the joint 
element can be expressed by the nodal displace-
ment vectors as follows: 

[:~] = [ B-C- 1 

B~C-l ] 0 - d (12) 
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Assuming that external forces are applied only at 
the nodal points and applying the virtual work 
principle to the joint element, the following 
equation is given: 

t J2b t t 
8d -f = 8( d - d )-( f. - f o 1 r 1 r 

) dt 

Substitution of Eq. (13) by Eqs. (2) and (12) 
gives 

(13) 

(14) 

(15) 

Since 8d
t represents arbitrary virtual displace­

ment, the following relation can be obtained: 

f [ K* -K*] -d 
-K* K* 

or 
f = K.-d 

J 

in which 

= [ K* -K*] 
Kj -K* K* 

(16) 

(17) 

The matrix K. represents the stiffness matrix of 
the joint el~ment. 

2-3 Idealization of interlocking block pavements 
A interlocking block pavement is divided to plate 
elements and joint elements: the concrete blocks 
are divided to rectangular plate elments and 
joints are replaced by the joint elements which 
are presented in the previous section (Figure 5). 
Thus, by this method various laying patterns can 
be considered. Furthermore, if triangle plate 
elements are employed, more complex laying pat­
terns can be handled. In this paper, two popular 
types of the laying pattern, stretcher bond and 
herringbone, will be discussed in the following 
sections (Figure 5). 

3. CALCULATION AND CONSIDERATION 

3-1. Spring coefficients 
As previously described, the values of the spring 
coefficients ~hould be determined by comparing 
computed results with experimental data. Unfor­
tunately, since there is little available data 
(6), exact values of,the spring coefficients 
could not be determined in this paper. Neverthe­
less, the function of each spring can be dis­
cussed by numerical calculations and tentative 
rough values of the spring coefficients can be 
obtained from a few experimental data. 
Figure 6 shows the results computed by the com­
puter program, changing the values of each spring 
coefficient under the same conditions. In this 
figure, the ordinate and abscissa are the ratio 
of the vertical stress at the top of the subbase 
to the loading pressure and yhe distance in x-di­
rection normalized by the rid ius of the loading 
plate, respectively. The measured data from ref­
erence 6 are also plotted. 
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Distribution of vertical stress at the 
vertical stresses at the top of the 

are smaller in Figure 6a than in Figures 
6c, it can be said that the shear spring 
contribute to the load transmission. By 

the computed results with the measured 
assumed in the following calculations 

only act as a shear spring: Kw = 490 
Ken = Kat = 0 N. 

, these values are expected to vary with 

Ken 

top of the subbase. 
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supporting conditions and types of sand which 
fills joints. Thus more calculations and exper­
iments are required to establish practical values 
of the spring coefficients. 

3-2. Laying pattern 
The method mentioned above can treat with vari­
ous types of laying pattern of rectangular con­
crete blocks. We shall consider two types of 
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Figure 7: Distribution of principle stresses. 

Table 1: Maximum stresses and deflections varying with the subbase reaction,k. 

Subbase 
reaction)k 

(MPa/m) 

49.0 
98.1 

245.2 
490.3 

2.71 
2.55 
2.13 
1.95 

0.107 
0.058 
0.027 

laying pattern: a stretcher bond type and a 
herring bone type which are very popular and 
widely used. 
Figure 7 shows the difference of the stress dis­
tribution between these types of laying pattern 
under the same conditions, In the calculations, 
it is assumed that the load is applied on the 
center block and its pressure is 0.785MPa ,and 
that the modulus of the subbase reaction, k, is 
245MPa/m. From this figure, it is clear that the 
stretcher bond type behaves anisotropically: the 
load transmission is larger in x-direction (the 
long edge direction). On the other hand, the 
herringbone type behaves almost isotropically. 
Table 1 shows the computed values of the maximum 
stresses and deflections of each type changing 
the modulus of the subbase reaction, k. It should 
be noted that, when k is small, the deflections 
of the stretcher type are larger than the herring­
bone type but the stresses of the stretcer bond 
is smaller than the herringbone type, and that, 
when k is relatively large, there is not much 
difference in these values between these two 
types of laying pattern. 

3-3. Loading location 
Even under the same load and laying pattern, the 
stresses and deflections may vary depending on 
whether or not the loading area crosses joints. 
In order to see the effect of the loading loca-
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2: Maximum stresses and deflections varying with the loading location. 

Stre Herrin 

Maximum Haximum 
deflection stress deflection 

(em) 

1 2.34 0.078 
2 2.48 0.070 
3 2.83 0.075 
4 4.22 0.067 
5 2.73 0.075 

tion. we computed the maximum stresses and deflec­
tion changing the loading location as shown in 
Figure 8. In the calculation, it is assumed that 
the tire imprint is 20xlO cm; the contact pres­
sure is 9.8lMPa and the modulus of the subbase 
reaction, k, is 245MPa/m. 
Table 2 shows the computed results. In each case, 
there is little difference of the deflection, but 
the 'significant effect of the loading location on 
the stresses in the blocks is recognized. 
Particularly, at the loading location No.4, the 
largest stress .occurs in the block under the load. 

4.' CONCLUSIONS 
We developed the computer program to analyze the 
~echanical behavior of the interlocking pavements 
and computed the stresses and deflections changing 
the laying pattern and loading condition. In the 
program, concrete blocks are divided to the rec­

'tangular plate elements and joints are replaced 
by the j oint elements which are modeled as a set 
of springs. 

"r.he values of the spring coefficients of the 
'joint element should be determined by comparing 
the computed results with experimental data. Owing 
tplack of available experimental data, we could 
riot determine the exact values. Nevertheless, from 

',?omputations and comparisons of computed results 
with a few experimental data, it was known that 

,the shear spring strongly contributes to the load 
transmission. Then, the tentative values of the 

, coefficients were determined. However, in 
to establish their practical values, fur-

calculations and experiments should be con-
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(MPa) (em) 

3.03 0.064 
3.75 0.064 
3.44 0.065 
5.07 0.061 
3.10 0.064 

To see the effect of the laying pattern, we con­
sidered two types: a stretcher bond type and a 
herringbone type. From the computed results, it 
was known that the stretcher bond type is of 
anisotropic behavior but the herringbone type is 
not, and that the maximum stresses and deflec­
tions hardly differ between these two types on 
relatively rigid subbase. 
The loading location is expected to affect the 
stresses and deflections in the blocks because 
of the existence of the joints. From the calcu­
lations changing the loading location, it was 
proved that the loading location significantly 
affects the stresses in the block under the load. 
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