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ABSTRACT

The bedding course plays an important role in determining the serviceability of interlocking block
pavement. In Japan, therefore, geotextile is commonly installed between the sand bedding course
and the base course, to prevent runoff of cushion sand. The quantity of geotextile used annually has
now reached about 1 million m2. However, there have been few studies on the beneficial effects of
geotextile in keeping the bedding and base courses separated from each other and improving the
pavement serviceability.

The authors constructed a 30-m-long pavement test site consisting of six pavement zones with
different cross-sectional dimensions in the pavement test field (circuit length: 628 m) of the Public
Works Research Institute of the Ministry of Land, Infrastructure and Transportation. The pavement
zones were constructed with or without geotextile having the fiber area weight of 60 g/m2 or 130
g/m2, either on the granular crushed-stone base course or the permeable bituminous stabilized base
course. Using a radio-operated no-man loading vehicle, a traffic simulation test of applying a 5-ton
equivalent wheel load 90,000 times was performed to examine the separating effects of geotextile
and the serviceability of the interlocking block pavement.

The results confirmed that with either base course, geotextile helped prevent the cushion sand from
migrating into the base. It was also proved that in zones with the permeable bituminous-stabilized
base course, geotextile helped reduce the rutting depth and rate of block breakage, maintaining a
good level of pavement serviceability. Because the fiber area weight of geotextile made no
difference to the pavement serviceability, geotextile having the fiber area weight of 60 g/m2 was
deemed adequate.

1. INTRODUCTION

The bedding course plays an important role in determining the serviceability of interlocking block
pavement (�ILB pavement�). In Japan, therefore, geotextile is commonly installed between the sand
bedding course and the base course, to prevent runoff of cushion sand. The quantity of geotextile
used annually has now reached about 1 million m2. However, there have been few studies on the
beneficial effects of geotextile in keeping the bedding and base courses separated from each other
and improving the pavement serviceability, apart from a report on test pavement work on an actual
road site (Saito et al., 1988) and an excavation survey on 2- to 14-year-old ILB pavements (Ando et
al., 2001).



 

Fig. 1 ILB pavement test zone layout 
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The authors constructed six ILB pavement zones with different cross-sectional profiles with or
without geotextile, varying the type of geotextile and base configurations, in the pavement test field
of the Public Works Research Institute of the Ministry of Land, Infrastructure and Transportation
(MLIT). An accelerated traffic simulation test was performed to examine the separating effects of
geotextile and the serviceability of the ILB pavement. This paper reports on the results of this full-
scale test.

2. OUTLINE OF FULL-SCALE TEST

2.1 Test zone layout
For the full-scale test, a 30-m-long test site was
constructed on the inner loop (circuit length: 628
m) of the pavement test field of the Public Works
Research Institute of the MLIT. As shown in
Figure 1, six pavement zones having the equal
area of 4 m wide x 5 m long with different cross-
sectional patterns were constructed to identify
how the presence and type of geotextile, as well
as different base configurations, would affect the
serviceability of ILB pavement. Two types of
geotextile were used: spunbonded nonwoven
fabric having the fiber area weight of 60 g/m2, and that of 130 g/m2.

2.2 Cross-sectional profiles of the pavement zones
In this test, the pavements were constructed as follows: the existing asphalt pavement was removed
up to 10 cm deep, and the base course, subbase, geotextile, sand bedding course and interlocking
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Table 1. Properties of permeable bituminous
stabilized mixture.

Item Characteristic value
Stability (KN) 2.45 or more
Flow (1/100 cm) 20 to 40
Void (%) 12 or more
Permeability
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Fig. 2 Cross-sectional profiles of the ILB 
pavements tested (unit: mm) 
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(cm/sec) 1.0 x 10-2 or more



which would cause the solidification or migration of sand. A CBR test on a subsoil sample showed
that the design CBR of the subgrade was 4% and 3% in the zones with existing mechanically
stabilized crushed-stone base course and those with the permeable bituminous-stabilized base
course, respectively.
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Table 2. Results of quality testing
on cushion sand.

Particle
size
Max.

Amount of
materials
passing the
0.075 mm
sieve (%)

Fineness
modulus

Pulverization
resistance
test

1.2 1.0 1.70 0.9%

d 4.75 or 5 or less 1.55 to 5.5

Increase in
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ing blocks, joint sand and cushion sand
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sed to ensure the good interlocking effects. The herringbone bond
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n sand materials were all selected in compliance with the quality
lock Pavement Engineering Association, 2000). The properties and

d are shown in Table 2 and Figure 5, respectively.

erlocking blocks
 (mm).

Figure 4. Herringbone bond pattern (45
degrees).
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The survey was broadly divided into three stages: a preliminary survey conducted during the
pavement construction, a follow-up survey conducted according to the required wheel load
applications, and an excavation survey conducted after the accelerated traffic simulation test. The
contents and timing of these surveys are shown in Table 3.

3. RESULTS OF ACCELER

Table 4 shows the main results
sections discuss these results.
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Table 3. Items and timing of surveys.
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3.1 Migration of cushion sand into the base course
A block sample was extracted after the wheel load had been applied 90,000 times and was visually
examined for signs of cushion sand migrating into the base course.

Table 4. Results of major items after 90 thousand applications.

*1: No clear difference is seen compared to the initial construction. *2: Minimum damage. Geotextile has entered between the aggregates.  *3:
Minor damage. Geotextile has entered between the aggregates. *4: Major damage. Geotextile has entered between the aggregates. NA:
Measurement was not applicable.

In the pavement zones without geotextile, cushion sand was found to have partially migrated into
the base course at the loading positions and other locations alike, regardless of the type of base
course. On the other hand, the cushion sand in the pavement zones with geotextile had hardly
migrated into the base course at any position. It was thus proved that geotextile had a separating
effect, preventing cushion sand from migrating into the base course.

3.2 Rut depth
Figure 6 shows the relationship between the rut depth measured with a transverse profilemeter and
the number of loading vehicle applications (number of equivalent 59-kN wheel loads applied).
According to Figure 6 and Table 4, the presence of geotextile had no apparent impact on the rut
depth after 90,000 applications in the mechanically stabilized crushed-stone base course. In the case
of the permeable bituminous-stabilized base course on the other hand, the pavement zones with
geotextile showed a smaller rut depth than the pavement zone without geotextile, regardless of the
fiber area weight.



Figure 6. Time history of rut depth.

These results suggest that geotextile helped prevent the rutting of pavement with the permeable
bituminous-stabilized base course, but not with the mechanically stabilized crushed-stone base
course. The rutting of a road surface occurs by deformation of the bedding course as well as
deformation of the base course and all layers below it. Thus, the presence of geotextile could hardly
affect the rut depth in pavements with the mechanically stabilized crushed-stone base course due to
the large amount of deformation in the base course and all layers below it. On the other hand,
according to the deflection measured with a falling-weight deflectometer and other results in Table
4, the permeable bituminous-stabilized base course had a greater bearing capacity and the layers
below it experienced smaller deflections than the crushed-stone base course. Also, as the separating
effect of geotextile prevented cushion sand from migrating into the base course, deformation of the
bedding course was presumably restrained in the permeable bituminous-stabilized base course. This
is supposed to be the reason for the shallower ruts in pavements with the permeable bituminous-
stabilized base course and geotextile.

3.3 Block breakage
Figure 7 shows the relationship between
block breakage and the number of wheel load
applications. Note that block breakage is
defined as the ratio of the number of broken
blocks to the total number of blocks in the
pavement zone surveyed.

According to Figure 7 and Table 4, the
presence of geotextile had no apparent impact
on the block breakage rate after 90,000
applications in pavements with the
mechanically stabilized crushed-stone base
course. In the case of permeable bituminous-
stabilized base course on the other hand, the
pavement zones with geotextile had a smaller
breakage rate than the pavement zone without
geotextile, regardless of the fiber area weight.

This result shows that geotextile restrained b
bituminous-stabilized base course, but not in th
base course. The fact that similar results were ob
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the rut-induced surface deformations caused friction between adjacent blocks, leading to breakage.

Note that about 80% of the breakages observed in this test was minor corner breakage that would
not require block replacement.

3.4 Maintenance Control Index (MCI0)
The Maintenance Control Index (�MCI0�) given in formula (1) below is used in the maintenance of
ILB pavement in Japan (Japan Interlocking Block Pavement Engineering Association, 2000).

MCI0 = 10 － 1.51 C0.3 － 0.30 D0.7 [1]
where,
C: Block breakage rate (%)
D: Average rut depth (mm)

The serviceability of the pavements was
evaluated according to this index. Table 5 and
Figure 8 show the results. The presence of
geotextile had no apparent impact on the MCI0
of the pavement with the mechanically
stabilized crushed-stone base course after
90,000 applications.

In the case of the bituminous stabilized base
course on the other hand, the MCI0 of the
pavement without geotextile was about 5.0,
while those of the pavements with geotextile of
60 g/m2 and 130 g/m2 were about 6.6 and 6.7,
respectively. The pavements with geotextile
thus had greater MCI0 than the pavement
without geotextile, regardless of the fiber area
weight. In terms of the MCI0 rating shown in
Table 6, the MCI0 of the pavements without
geotextile are categorized as �Rank C� because
of the greater degree of rutting and block
breakage. On the other hand, those of the
pavements with geotextile of either fiber area
weight are evaluated one rank higher, namely
�Rank B (Regarded good despite some
deficiencies)�.

The above results confirmed that geotextile did
not significantly contribute to the serviceability
of ILB pavement with the mechanically
stabilized crushed-stone base course, but it
certainly did in the case of the permeable
bituminous-stabilized base course.

3.5 Properties of geotextile
A series of performance evaluation tests was
carried out on geotextile samples extracted after
90,000 applications. Table 7 compares the
results with the properties before the test.
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Table 5. Results of MCI0 evaluation.
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Note that the geotextile in pavements with the permeable bituminous-stabilized base course had
been firmly buried between the base course materials, and could not be sampled without incurring
damage at the loading positions. Therefore, the mechanical properties such as the tensile strength,
elongation and tear strength of geotextile could not be evaluated for the pavements with this base
course. Also, it was not possible to perform a comparison with the properties of geotextile in the
pavements with the mechanically stabilized crushed-stone base course.

According to Table 7, the post-test apparent density was reduced for the 60 g/m2 geotextile but
increased for the 130 g/m2 geotextile, regardless of the base course material and location. This is
supposed to have been largely affected by the on-site sampling procedures, such as the sampling
itself and the sample adjustment cleaning. The intrinsic viscosity factor (IVF), which is one of the
indexes of polymer material deterioration, showed the excellent retention rate of between 98 and
100%. This suggests that the fibers of the geotextile hardly deteriorated even after the traffic
simulation test.
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 summarized as follows.
observation confirmed that geotextile served to prevent cushion sand from
o the base course, in pavements either with the mechanically stabilized crushed-
urse or the permeable bituminous-stabilized base course.
xtile was installed between the sand bedding course and the permeable
tabilized base course, the degree of rutting and block breakage were smaller than
 geotextile. Therefore, the serviceability of pavements with geotextile was
e rank higher than those without geotextile in terms of MCI0 even after applying
alent wheel load 90,000 times. This proved that geotextile helps maintain good
viceability when the permeable bituminous-stabilized base course is used in ILB

ving the fiber area weight of 60 g/m2 and that of the 130 g/m2 type showed
ge conditions, physical properties and MCI0 in pavements with the permeable
tabilized base course. Therefore, it can be concluded that geotextile having the
ight of 60 g/m2 is adequate.
tile was used in pavements with the mechanically stabilized crushed-stone base
xtile provided a separating effect as mentioned in (2) above. However, the
eotextile did not affect pavement serviceability. Therefore, the beneficial effects
on the serviceability of ILB pavement were not confirmed in pavements with the
 stabilized crushed-stone base course.
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scale tests, it was confirmed that when the permeable bituminous-stabilized base
B pavement, installation of geotextile between the base course and sand bedding

vent cushion sand from migrating into the base course and would restrain
 sand bedding course, thereby reducing the degree of rutting and block breakage.
of ILB pavement was found to be better maintained with geotextile than without,
cial effects of geotextile in pavements with the permeable bituminous-stabilized

ried out as part of research in the International Standard Development Project for
motion, �Standardization of Performance Evaluation Criteria for Fiber Materials
avements� by the New Energy and Industrial Technology Development
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